skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shao, Jian‐qiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Machine learning has proven useful in analyzing complex biological data and has greatly influenced the course of research in structural biology and precision medicine. Deep neural network models oftentimes fail to predict the structure of complex proteins and are heavily dependent on experimentally determined structures for their training and validation. Single‐particle cryogenic electron microscopy (cryoEM) is also advancing the understanding of biology and will be needed to complement these models by continuously supplying high‐quality experimentally validated structures for improvements in prediction quality. In this perspective, the significance of structure prediction methods is highlighted, but the authors also ask, what if these programs cannot accurately predict a protein structure important for preventing disease? The role of cryoEM is discussed to help fill the gaps left by artificial intelligence predictive models in resolving targetable proteins and protein complexes that will pave the way for personalized therapeutics. 
    more » « less
  2. ABSTRACT Age‐related skeletal muscle atrophy, known as sarcopenia, is characterized by loss of muscle mass, strength, endurance, and oxidative capacity. Although exercise has been shown to mitigate sarcopenia, the underlying governing mechanisms are poorly understood. Mitochondrial dysfunction is implicated in aging and sarcopenia; however, few studies explore how mitochondrial structure contributes to this dysfunction. In this study, we sought to understand how aging impacts mitochondrial three‐dimensional (3D) structure and its regulators in skeletal muscle. We hypothesized that aging leads to remodeling of mitochondrial 3D architecture permissive to dysfunction and is ameliorated by exercise. Using serial block‐face scanning electron microscopy (SBF‐SEM) and Amira software, mitochondrial 3D reconstructions from patient biopsies were generated and analyzed. Across five human cohorts, we correlate differences in magnetic resonance imaging, mitochondria 3D structure, exercise parameters, and plasma immune markers between young (under 50 years) and old (over 50 years) individuals. We found that mitochondria are less spherical and more complex, indicating age‐related declines in contact site capacity. Additionally, aged samples showed a larger volume phenotype in both female and male humans, indicating potential mitochondrial swelling. Concomitantly, muscle area, exercise capacity, and mitochondrial dynamic proteins showed age‐related losses. Exercise stimulation restored mitofusin 2 (MFN2), one such of these mitochondrial dynamic proteins, which we show is required for the integrity of mitochondrial structure. Furthermore, we show that this pathway is evolutionarily conserved, as Marf, the MFN2 ortholog inDrosophila, knockdown alters mitochondrial morphology and leads to the downregulation of genes regulating mitochondrial processes. Our results define age‐related structural changes in mitochondria and further suggest that exercise may mitigate age‐related structural decline through modulation of mitofusin 2. 
    more » « less
  3. Abstract The sorting and assembly machinery (SAM) Complex is responsible for assembling β‐barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block‐face‐scanning electron microscopy and computer‐assisted 3D renderings were employed to compare mitochondrial structure and networking inSam50‐deficient myotubes from mice and humans with wild‐type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography‐Mass Spectrometry‐based metabolomics to explore differential changes in WT andSam50‐deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation inSam50‐deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß‐Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism inSam50‐deficient myotubes. Furthermore, impairment of oxidative capacity was observed uponSam50ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact ofSam50‐deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle. 
    more » « less